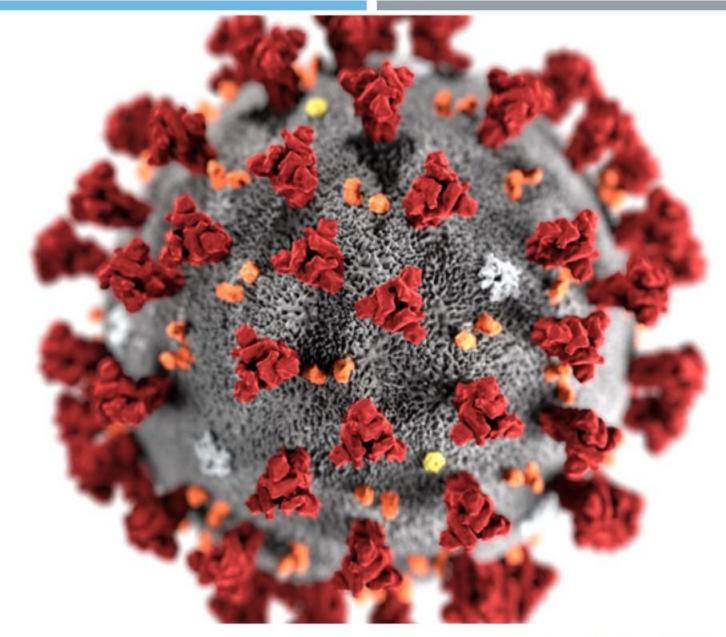


COVID-19 IN GASTROINTESTINAL AND HEPATOBILLIARY SYSTEM

DR. BJ WALELENG, SP.PD-KGEH, FINASIM

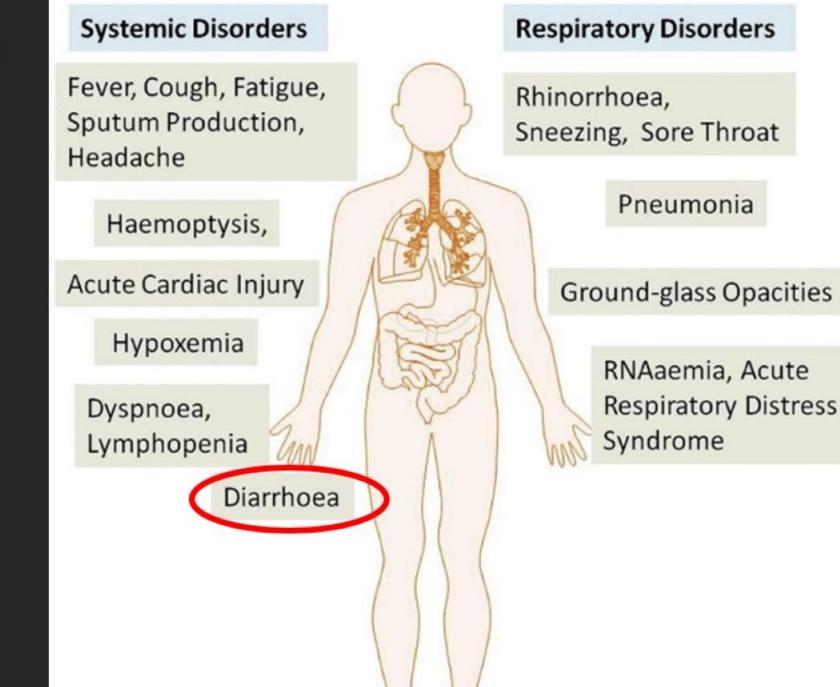

DIVISI GASTROENTERO-HEPATOLOGI

BAGIAN/KSM ILMU PENYAKIT DALAM FK UNSRAT/RSUP PROF DR. R.D. KANDOU

MANADO

SARS-COV-2

- Genus ß Coronavirus
- RNA positive
- Incubation range from 2-14 days
- Respiratory sign and symptom → dyspnea, fever, cough
- New Study→GI sign and symptom? Viral RNA in Stool sample?



Kishan PP, et al. Journal of Clinical Virology. 2020

Symptoms near the time of presentation in various cohorts

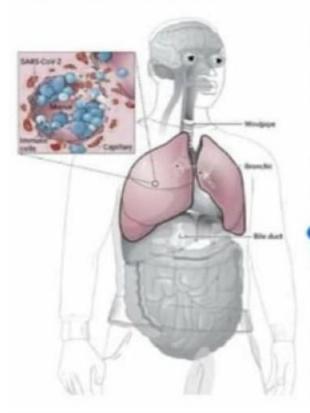
	Guan et al. NEJM (largest cohort)	Shi et al Lancet	Yang et al. Lancet (critically ill pts)	Chen et al.	Huang et al.	Xu et al. BMJ
Constitutional						
Fever	473/1081 (43%)	18/21 (86%)	46/52 (88%)	82/99 (83%)	40/41 (98%)	48/62 (77%)
Myalgia	164/1081 (15%)		6/52 (12%)	11/99 (11%)		
Headache	150/1081 (14%)	2/21 (10%)	3/52 (6%)	8/99 (8%)	2/38 (8%)	21/62 (34%)
Upper respirator	ry					
Rhinorrhea	53/1081 (5%)	5/21 (24%)	3/52 (6%)	4/99 (4%)		
Sore throat	153/1081 (14%)			5/99 (5%)		
Lower respirator	y					
Dyspnea	205/1081 (19%)	9/21 (43%)	33/52 (64%)	31/99 (31%)	22/40 (55%)	2/62 (3%)
Chest tightness		5/21 (24%)				
Cough	745/1081 (68%)	15/21 (71%)	40/52 (77%)	81/99 (82%)	31/41 (76%)	50/62 (81%)
Sputum	370/1081 (34%)	3/21 (14%)			11/39 (28%)	35/62 (56%)
Hemontycis	10/1081 (1%)				2/39 (5%)	2/62 (3%)
Gastrointestinal						
Nausea/Vomiting	55/1081 (5%)	2/21 (10%)	2/52 (6%)	1/99 (1%)		
Discribea	42/1081 (4%)	1/21 (5%)		2/99 (2%)	1/38 (3%)	3/62 (8%)

CLINICAL MANIFESTATIONS

XIAOWEI LI, ET AL. JOURNAL OF PHARMACEUTICAL ANALYSIS. 2020

RECENTLY PUBLISHED REVIEW FROM AMERICAN GASTROENTEROLOGY ASSOCIATION (AGA)

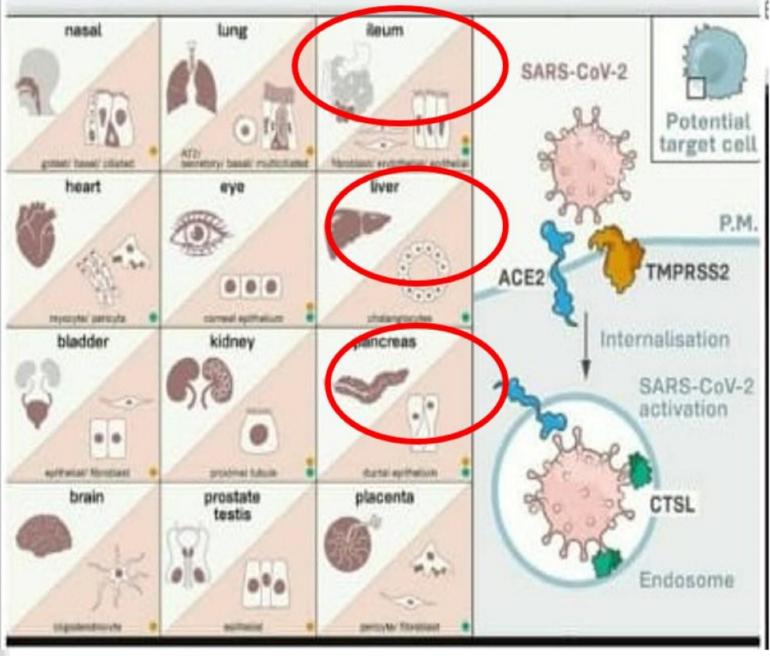
RELEASED 4TH MAY 2020


AGA Institute Rapid Review of the GI and Liver Manifestations of COVID-19, Meta-Analysis of International Data, and Recommendations for the Consultative Management of Patients with COVID-19

Authors: Shahnaz Sultan*1, Osama Altayar*2, Shazia M. Siddique3, Perica Davitkov4, Joseph D. Feuerstein5, Joseph K. Lim6, Yngve Falck-Ytter4, Hashem B. El-Serag7 on behalf of the AGA

*co-first authors

An invader's impact


In serious cases, SARS-CoV-2 lands in the lungs and can do deep damage there. But the virus, or the body's response to it, can injure many other organs. Scientists are just beginning to probe the scope and nature of that harm. Click on organ name for more.

Brain Eyes Nose Lungs

A cross section shows immune cells crowding an inflamed alveolus, or air sac, whose valls break down during attack by the virus, diminiting oxygen uptake. Patients cough, fevers rise, and breathing becomes labored.

Sherief M. Journal of Gastroenterology. 2020

Incidence of Gastrointestinal (GI) Manifestations exhibited in COVID-19 Patients

Study	Number of Patients	GI symptoms	No GI symptoms	
	N	N (%)	N (%)	
Pan L, et al. ¹¹	203	103 (50.7%)	100 (49.3%)	
Jin X., et al. ⁷	651	74 (11.3%)	577 (88%)	
Fang D, et al. ¹⁶	201	159 (79.1%)	42 (20.8%)	
Zhang JJ, et al ¹⁷	139	55 (39.6%)	84 (60.4%)	

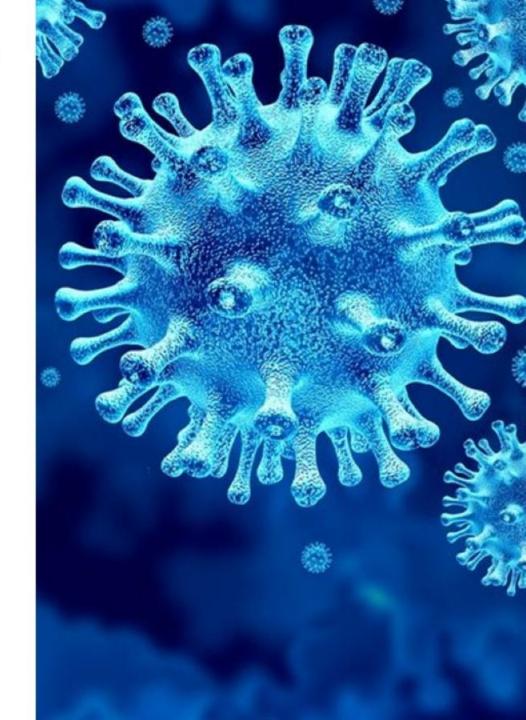
COVID-19-coronavirus disease 2019, N- Number

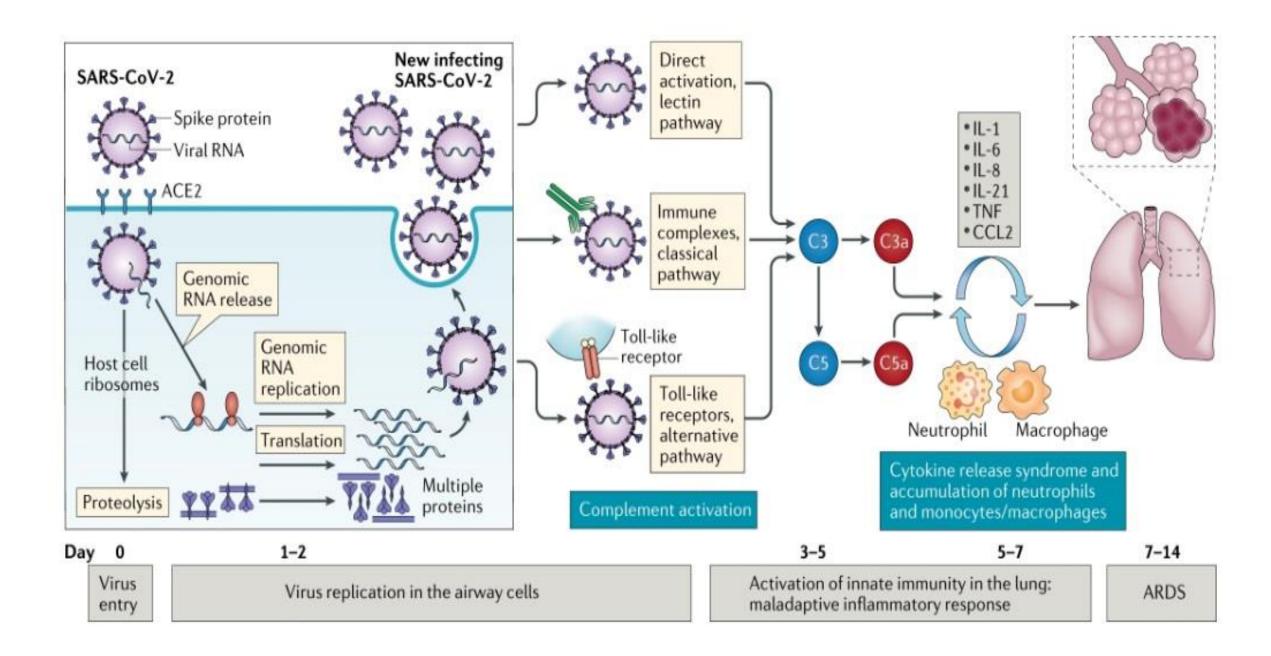
Study	Number of	Anorexia N (%)	Nausea N (%)	Vomiting N (%)	Diarrhea N (%)	Abdominal Pain
	Patients N			,		N (%)
Pan L, et al. ¹¹	103	81 (78.6%)	NA	4 (3.9%)	35 (34%)	2 (2%)
Jin X., et al. ⁷	74	NA	13 (17.5%)	14 (18.6%)	56 (75%)	NA
Fang D, et al.16	201	NA	59 (29.4%)	32 (16 %)	44 (22%)	12 (6%)
Guan W, et al. ¹⁸	1095	NA	55 (5%)	55 (5%)	42 (3.8%)	NA
Zhang JJ, et al. ¹⁷	139	17 (12.2%)	24 (17.3%)	7 (5%)	18 (13%)	8 (13%)
Wang D, et al. ¹⁹	138	55 (40%)	14 (10%)	5 (3.6%)	14 (10%)	3 (2.2%)
Shi H, et al.20	81	1 (1%)	NA	4 (5%)	3 (4%)	NA
Zhou F, et al.21	191	NA	7 (4%)	7 (4%)	9 (5%)	NA
Mo P, et al. ²²	155	NA	3 (3.7%)	3 (4%)	7 (4.5%)	3 (2%)
Chen N, et al. ²³	99	NA	1 (1%)	1 (1%)	2 (2%)	NA
Yang X. et al.24	52	NA	NA	2 (4%)	NA	NA

COVID-19-coronavirus disease 2019, NA- not applicable

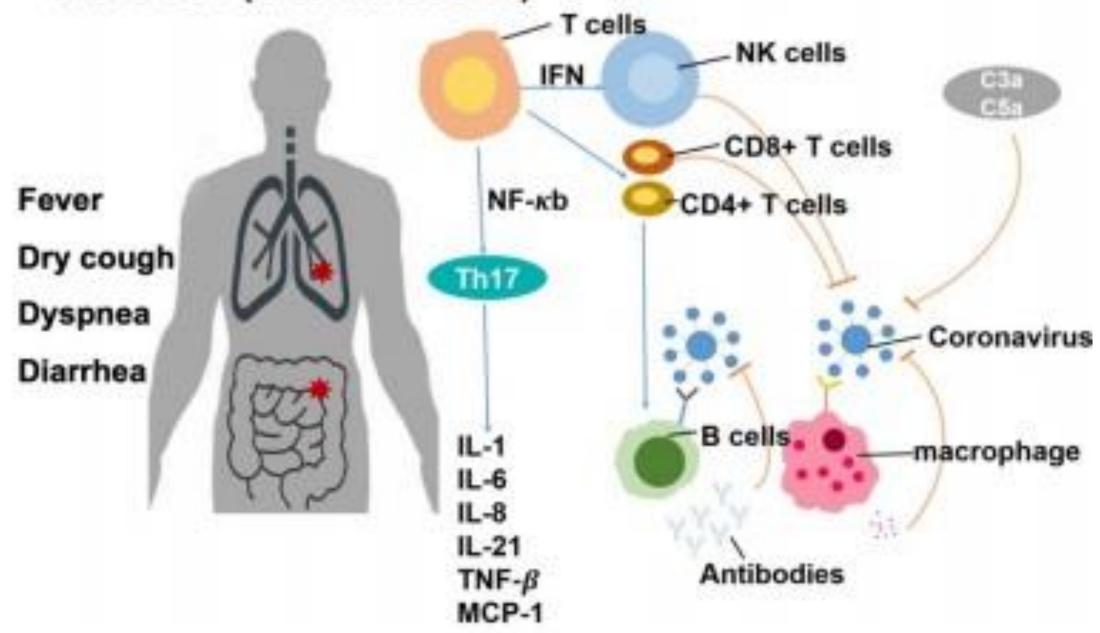
GI and Liver Symptoms	All Studies % (95% CI)	Studies from China % (95% CI)	Studies from countries other than China % (95% CI)
Diarrhea in all Patients*	7.7% (7.2 to 8.2)	5.8% (5.3 to 6.4)	18.3% (16.6 to 20.1)
	N/n = 43/10,676	N/n = 32/8,612	N/n = 11/2,064
Nausea/Vomiting in all Patients*	7.8% (7.1 to 8.5)	5.2% (4.4 to 5.9)	14.9% (13.3 -16.6)
	N/n = 26/5,955	N/n = 19/4,054	N/n = 7/1,901
Abdominal Pain*	3.6% (3.0 to 4.3)	2.7% (2.0 to 3.4)	5.3% (4.2 to 6.6)
	N/n = 15/4,031	N/n = 10/2,447	N/n = 5/1,584
Patients with Elevated AST	15.0% (13.6 to 16.5)	14.9% (13.5 to 16.4)	20.0% (12.8 to 28.1)
	N/n = 16/2,514	N/n = 14/2,398	N/n = 2/116
Patients with Elevated ALT	15.0% (13.6 to 16.4)	14.9% (13.5 to 16.3)	19.0% (12.0 to 27.1)
	N/n = 17/2,711	N/n = 15/2,595	N/n = 2/116
Patients with Elevated T. Bilirubin	16.7% (15.0 to 18.5)	16.7% (15.0 to 18.5)	-
	N/n = 10/1841	N/n = 10/1841	

^{*}Regardless of Hospitalization and Timing of Symptoms.


Abbreviations: T. Bilirubin=total bilirubin; CI=confidence interval; N=number of studies; n=number of patients.

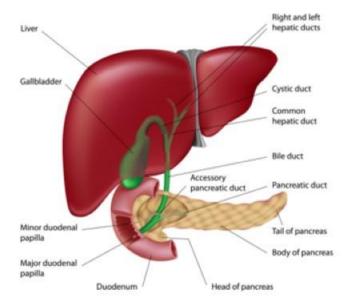

GI MANIFESTATIONS

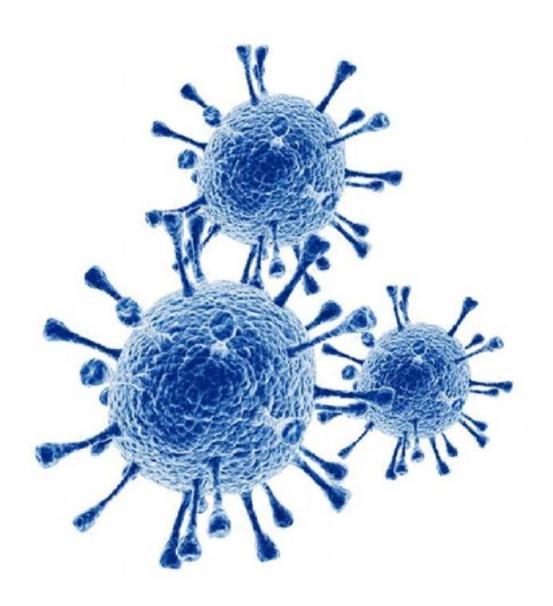
- Diarrhea (7.2%-18.3%)
 - Duration 1-4 days, Stool culture -, Stool Leukocytes -
- Loss of appetite (39.9%-50.2%)
- Nausea (1%-29.4%)
- Vomiting (3.6%-66.7%)
- Abdominal pain(3.9%)
- GI symptoms may occur before COVID-19
 Respiratory symptom


PATHOPHYSIOLOGY

- Enterocyte invasion via ACE2 receptor → increase permeability and malabsorption
- Inflammatory reaction
- ACE2 receptor was found along the digestive tract lining

SARS-CoV (& SARS-CoV-2?)


GUT-LUNG AXIS Good clearance mechanism Normal ciliary function Inhalation AIRWAY-LUNGS Microaspiration -**GUT** Normal microbiome Proteobacteria **Firmicutes** Actinobacter Fusobacterium Bacteroidetes Innate immune response eg Innate lymphoid cell type 3 (ILC-3) Bacterial ligands (e.g. Lipopolysaccharide) Acquired immune response eg T helper cell-dendritic cell interaction to Bacterial metabolites (e.g. Short chain fatty acids) Migratory cells (e.g. T cells) generate inhibitory Treg cells


EVIDENCE OF SARS COV-2 IN GI TRACT

- Some studies → viral RNA was found in saliva and stool
- Viral RNA in saliva → highest viral load on 1st week, and detectable until 29 days
- Study from Cai et al → RNA COV-2 can be detected 2 weeks until 1 month
- Viral RNA in stool can remain even after viral RNA in the respiratory tract clears → Fecal-oral transmission and diagnostic are unclear

HEPATOBILLIARY AND PANCREAS MANIFESTATION

- Increased transaminase serum(14.8%-53%)
- Increased bilirubin serum
- Increased Amilase and lipase (17%)

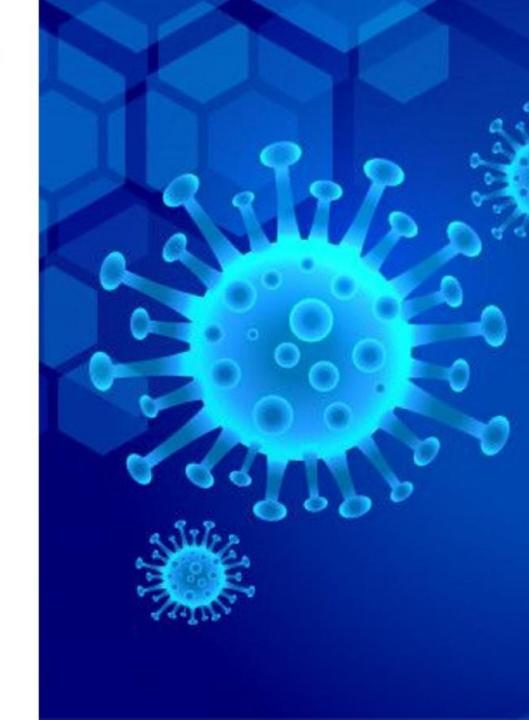
POST MORTEM PATHOLOGICAL FINDING

- Xu et al:
 - Moderate Microvesicular steatosis and mild lobular activity
- Liu et al
 - Iobular focal necrosis with infiltration of neutrophils, hepatic sinuses congestion with microthrombosis, and monocytes and lymphocytes in the portal area.

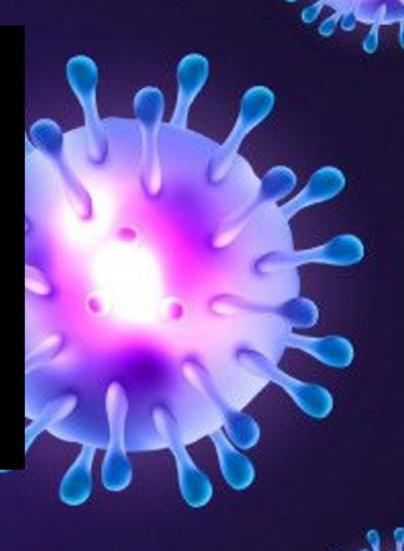
Study	Number of	AST	ALT	Total Bilirubin	
	Patients (N)	N (%)	N (%)	N (%)	
Pan L, et al. ¹¹	204	22 (11%)	27 (13%)	NA	
Fang D, et al. ¹⁶	304	24 (8%)	19 (6%)	6 (2%)	
Guan W, et al. ¹⁸	741	168 (22%)	158 (21%)	76 (10%)	
Chen N, et al.23	99	35 (35%)	28 (28%)	18 (18%)	
Xu X, et al.30	62	10 (16%)	26 (20-32)+	NA	
Huang C et al.31	41	15 (37%)	32 (21-50)+	11.7 (9.5-13.9)	
Zhou F, et al. ²¹	189	NA	59 (31%)	NA	
Mo P, et al.22	155	32 (24-48)++	23 (16-38)	NA	
Shi H, et al.20	81	43 (53%)	NA	NA	

COVID-19-coronavirus disease 2019, AST-Aspartate aminotransferase, ALT- Alanine aminotransferase, ++ median in mmol/L, + median in U/L, N- number

PATOPHYSIOLOGY OF LIVER INVOLVEMENT


- Unclear mechanism
 - Viral invasion via ACE2 receptor
 - ACE2 receptor was found along the digestive lining (such as Cholangiocytes, and little found in hepatocytes)
 - Immune-mediated → cytokine storm
 - Hypoxemia → Ischemic hepatitis
 - Drug hepatotoxicity (Chloroquine; macrolides; quinolones; and lopinavir/ritonavir)

Medica tion Type	Medication Name	Gastrointestinal AEs	Hepatic AEs	Major drug-drug interactions
Anti- malarial	Chloroquine	Nausea, vomiting, abdominal pain, and diarrhea reported; frequency not defined	Likelihood score: D (possible rare cause of clinically apparent liver injury) Description: Rare elevations in aminotransferases. Most reactions are hypersensitivity with no known cross reactivity to hepatic injury. If this occurs,	Substrate for CYP2D6 and CYP3A4 substrate Same as above; also
			reasonable to switch between chloroquine therapies	substrate for CYP3A5 and CYP2C8
Anti- viral	Remdesivir	Not reported (limited data available)	Likelihood score: Not scored Description: Hepatotoxicity reported; frequency not yet known	Not a significant inducer/inhibitor of CYP enzymes
5	Lopinavir/ritonavir	Nausea and vomiting: 5-10% (higher in	<u>Likelihood score:</u> D (possible, rare cause of clinically apparent	Substrate for: CYP3A4, CYP2D6
		children: 20%) Abdominal pain: 1- 10% Diarrhea: 10-30% + dose-dependent Other: dysguesia in adults <2%, children: 25%, increased serum amylase, lipase: 3-8%	liver injury) <u>Description:</u> Hepatotoxicity ranges from mild elevations in aminotransferases to acute liver failure. Recovery takes 1-2 months. Re-challenging may lead to recurrence and should be avoided if possible.	P-gp Inducer for: CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, UGT1A1 Inhibitor for: CYP3A4
	Favipiravir	Nausea/vomiting: 5- 15% <u>Diarrhea</u> : 5% Limited data available	<u>Likelihood score</u> : Not scored <u>Description</u> : 3% prevalence, but little data available	Inhibitor for: CYP2C8 and aldehyde oxidase Metabolized by xanthine oxidase and aldehyde oxidase


IMPLICATIONS OF GI-LIVER INVOLVEMENT RELATED TO COVID-19 PROGNOSIS

- No significant difference in Procalcitonin and CRP between patients with and without GI related symptoms
- ARDS occurs <u>significantly more common</u> in COVID-19 patient groups with GI symptom
- Liver injury <u>more commonly occur</u> among COVID-19 patients with GI symptom
- More likely to be transferred to ICU and need mechanical ventilation

DIAGNOSTIC APPROACH

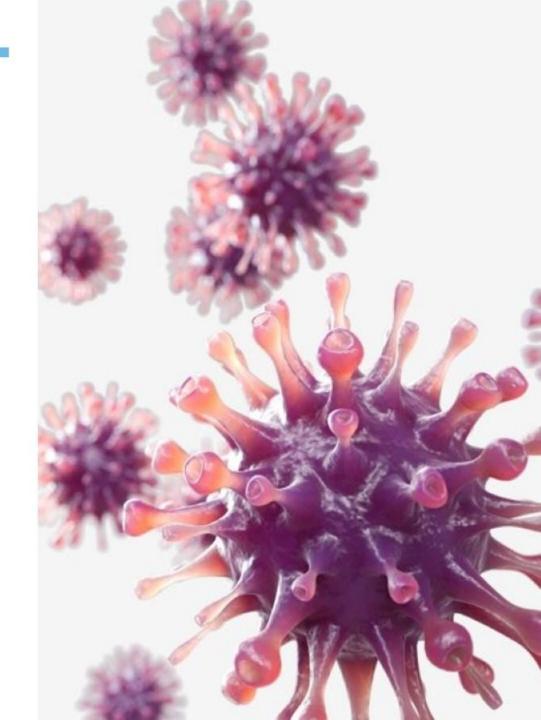
- Patient with diarrhea > information about contact exposure, obtain a detailed history of symptoms associated with COVID-19, obtain a thorough history for other GI symptoms, including nausea, vomiting, and abdominal pain
- Patient with elevated transaminase serum → is there other etiology?
- Presently→Stool testing for COVID-19 diagnosis is not recommended

Management of COVID in GI & Liver

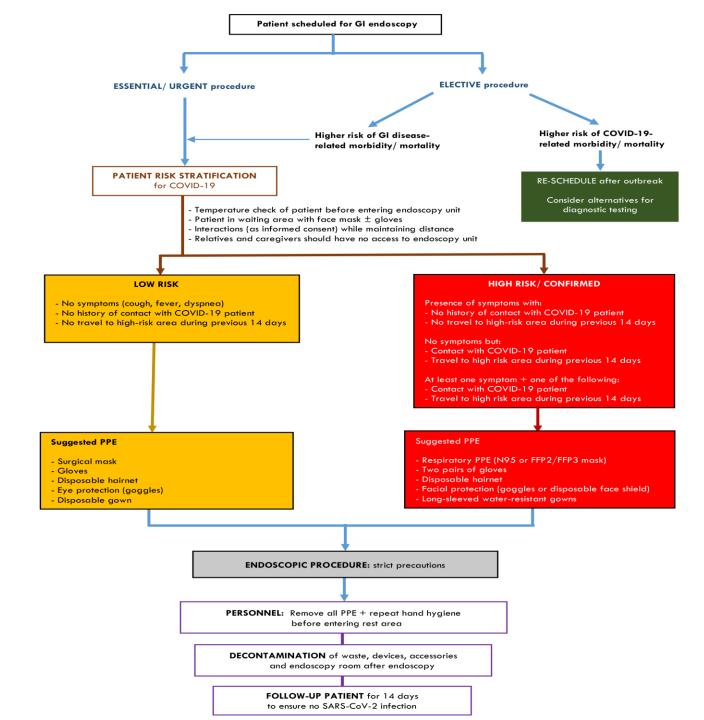
- Treat COVID-19 using available drug
- Supportive & Symptomatic therapy
 - Nausea and vomiting > anti-emetic
 - Diarrhea → antidiarrhea
- Patient with eating problem > Consider enteral/ parenteral nutrition

DIGESTIVE ENDOSCOPY IN COVID-19 PANDEMIC

- Prior to any procedure, COVID-19 screening is performed first
- If the initial screening is negative → secondary protection standards
- If COVID-19 is diagnosed or suspected → tertiary protection standards and in a negative pressure procedure room
- Patients who are unable to be screened for COVID-19 due to emergency are treated as suspected cases



DIGESTIVE ENDOSCOPY IN COVID-19 PANDEMIC


American Society of Gastrointestinal
 Endoscopy → Endoscopy, ERCP are high-risk procedures → potential transmission of the virus via a

fecal-oral route

- Colonoscopy → Intermediate-risk
- Suspend elective endoscopy procedures

workflow in endoscopy units during SARS-CoV-2 outbreak

TERIMA KASIH

STAY HOME STAY SAFE

CORONAVIRUS